Relevant Feature Integration and Extraction for Single-Trial Motor Imagery Classification
نویسندگان
چکیده
Brain computer interfaces provide a novel channel for the communication between brain and output devices. The effectiveness of the brain computer interface is based on the classification accuracy of single trial brain signals. The common spatial pattern (CSP) algorithm is believed to be an effective algorithm for the classification of single trial brain signals. As the amplitude feature for spatial projection applied by this algorithm is based on a broad frequency bandpass filter (mainly 5-30 Hz) in which the frequency band is often selected by experience, the CSP is sensitive to noise and the influence of other irrelevant information in the selected broad frequency band. In this paper, to improve the CSP, a novel relevant feature integration and extraction algorithm is proposed. Before projecting, we integrated the motor relevant information to suppress the interference of noise and irrelevant information, as well as to improve the spatial difference for projection. The algorithm was evaluated with public datasets. It showed significantly better classification performance with single trial electroencephalography (EEG) data, increasing by 6.8% compared with the CSP.
منابع مشابه
Common Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملNonnegative Matrix Factorization for Motor Imagery EEG Classification
In this paper, we present a method of feature extraction for motor imagery single trial EEG classification, where we exploit nonnegative matrix factorization (NMF) to select discriminative features in the time-frequency representation of EEG. Experimental results with motor imagery EEG data in BCI competition 2003, show that the method indeed finds meaningful EEG features automatically, while s...
متن کاملSingle-Trial Classification of an EEG-Based Brain Computer Interface using the Wavelet Packet Decomposition and Cepstral Analysis
Single-Trial Classification of an EEG-Based Brain Computer Interface using the Wavelet Packet Decomposition and Cepstral Analysis S. Lodder Department of Electrical and Electronic Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Thesis: MScEng (E&E) December 2009 A Brain-Computer Interface (BCI) monitors brain activity by using signals such as EEG, EcOG, an...
متن کامل